A Comparison of Random Forests and Dropout Nets for Sign Language Recognition with the Kinect
ثبت نشده
چکیده
Random Forests (RF) and Dropout networks are currently two of the most effective machine learning algorithms available. However, so far a study directly comparing the accuracy of both on the same dataset has not been performed. We hope to fill this gap by testing the classification accuracy of both of these ensemble methods on a novel dataset of American Sign Language (ASL) hand signs collected using the Microsoft Kinect. Results show that dropout nets achieve a higher gesture classification accuracy, particularly as the number of classification labels increases. Further, a neural network trained with dropout outperforms the same net without dropout, demonstrating the effectiveness of the technique. Individual gesture recognition accuracy as well as computation times for both algorithms will be presented.
منابع مشابه
Persian sign language detection based on normalized depth image information
There are many reports of using the Kinect to detect hand and finger gestures after release of device by Microsoft. The depth information is mostly used to separate the hand image in the two-dimension of RGB domain. This paper proposes a method in which the depth information plays a more dominant role. Using a threshold in depth space first the hand template is extracted. Then in 3D domain the ...
متن کاملSign Language Recognition with the Kinect Sensor Based on Conditional Random Fields
Sign language is a visual language used by deaf people. One difficulty of sign language recognition is that sign instances of vary in both motion and shape in three-dimensional (3D) space. In this research, we use 3D depth information from hand motions, generated from Microsoft's Kinect sensor and apply a hierarchical conditional random field (CRF) that recognizes hand signs from the hand motio...
متن کاملSign Language Recognition and Translation with Kinect
Sign language (SL) recognition, although has been explored for many years, is still a challenging problem for real practice. The complex background and illumination conditions affect the hand tracking and make the SL recognition very difficult. Fortunately, Kinect is able to provide depth and color data simultaneously, based on which the hand and body action can be tracked more accurate and eas...
متن کاملSign Language Recognition with Kinect
A framework for general gesture recognition is presented and tested with isolated signs of sign language. Other than common systems for sign language recognition, this framework makes use of Kinect, a depth camera developed by Microsoft and PrimeSense, which features easy extraction of important body parts. Recognition is done using hidden Markov models with a continuous observation density. Th...
متن کاملAdvancing human pose and gesture recognition
This thesis presents new methods in two closely related areas of computer vision: human pose estimation, and gesture recognition in videos. In human pose estimation, we show that random forests can be used to estimate human pose in monocular videos. To this end, we propose a co-segmentation algorithm for segmenting humans out of videos, and an evaluator that predicts whether the estimated poses...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013